Ashwanth Kuppusamy

JR. MACHINE LEARNING ENGINEER

Corvallis OR | 5412862753 | kuppusaa@oregonstate.edu

Profile

Result oriented Machine Learning Engineer with hands-on experience in the full model development lifecycle, from creating **automated labeling frameworks** to optimizing training pipelines. Leverages expertise in **continual learning** of **foundational models**, **pretraining**, and **domain adaptation** to enhance model performance. Proficient in PyTorch, OpenCV, and MLOps tools (Docker, Azure DevOps), with a focus on building efficient computer vision solutions.

Skills & abilities

- Python, C++, SQL, Git, Docker, Azure DevOps, Jenkins, Valohai MLOps, JFrog, JavaScript
- pyTorch, PySide6, OpenCV, CUDA, ONNX, tensorRT, FFCV, pandas, NumPy, matplotlib

Experience

Microtec | Jr. Machine Learning Engineer

Jun 2024 - Present

Automated Labeling Framework

Part-time / 6 Months Full time

- Designed and deployed an automated labeling system (object detectors + SAM), cutting labeling time by 50% and saving 100000+ dollars.
- Scaled training on dataset with 300,000+ images across 20 wood defect classes under varying lighting, resolutions, and textures to ensure generalization in production.
- Implemented replay-based **continual learning** to prevent catastrophic forgetting during incremental updates.
- **Transfer learned** features from large scale pretrained weights to accelerate model training, improve performance, and mitigate overfitting
- Built end-to-end MLOps pipelines using Docker, Jenkins and JFrog for training and deployment.

Training enhancements

- Used supervised and unsupervised pretraining techniques to reduce training data by at least 30%
- Developed semantic segmentation nets for visually similar wood defects classes with low saliency
- Developed Negative instance mining loss to reduce false positive instances by more than 90%
- Improved model performance on long-tail distributions by analyzing **t-SNE** visualizations of model embeddings to identify and address underperforming sub-class clusters.
- Created custom metrics for better model selection by combining instance and pixel metrics.
- Conducted A/B testing of segmentation architectures, balancing IoU, inference speed, memory
 efficiency and other custom metrics

Assisted Labelling Tool

• Architected and delivered an end-to-end assisted labeling tool (PySide6 + SAM backend) for prompt-based automated segmentation, **doubling** labeling throughput across the organization

- Implemented novel **caching** algorithm to precompute the SAM embeddings and ensured realtime labeling performance on CPU only machines for images as large as 21000 x 7000 pixels
- Engineered annotation tools including magnetic lasso tool, mask addition and subtraction.
- Led **full product lifecycle** from development to production deployment, managing beta release cycle, incorporating user feedback, and replacing old annotation tool used across the organization
- Built comprehensive performance monitoring system with granular time tracking across operations to identify optimization opportunities to improve tool efficiency by measurable metrics

Education

Oregon State University, MS Computer Science

Sep 2023 - Dec 2025

Major: Computer Science | Minor: Artificial Intelligence

Master's thesis

Super-resolution attack on Thumbnail preserving encryption

Jun 2024 - Present

- Implemented a two-stage non-blind image restoration pipeline based on **DiffBIR** for breaking TPE image encryption
- Applied SwinIR as the restoration module, achieving +73% SSIM and +33% PSNR improvement over baseline GAN method.
- Trained a ControlNet-guided Stable Diffusion model to reconstruct high-resolution details from SwinIR outputs.
- Improved decryptable block size from 8 to 16 over pix2pix GAN baseline for 256 x 256 images

Projects

ConvMAE SSP Jun 2025

Architected novel MAE inspired MIM pre-training for conv transformer hybrid QT-ViT architecture

- Implemented custom masked linear attention and masked convolution blocks for pretraining
- Improved classification accuracy of 12M parameter model from 78.6 to 80.18 on ImageNet-100
- Built multi-scale feature fusion decoder processing 4 resolution levels (H/4 to H/32) with transformer blocks and positional encoding for image reconstruction
- Developed distributed training pipeline using PyTorch DDP with cosine LR schedule, gradient synchronization, and mixed precision for efficient ImageNet pre-training.

Brain tumor segmentation

Jan 2024

- Investigated 2D/3D UNet, ResUNet and Attention-ResUNet for brain tumor segmentation.
- Developed a Ensemble of 2D Attention ResUNet architecture and improved IOU score by 6%.
- Applied data augmentation such elastic deformations, intensity shifts to simulate brain tissue variability and scanner inconsistencies to mitigate overfitting on limited medical datasets.
- Obtained IOU score of 0.8 with 3D ResUNet and 0.79 with Ensemble of 2D Attention-ResUNet.

Publications

"Inference at the Edge for Complex Deep Learning Applications with Multiple Models and Accelerators" 2023 14th (ICCCNT), Delhi, India, 2023, pp. 1-7, doi: 10.1109/ICCCNT56998.2023.10306363